

In Exercises 7 and 8, a distance-time graph is shown.

- (a) Estimate the slopes of the secants PQ1, PQ2, PQ3, and PQ4, arranging them in order in a table. What is the appropriate unit for these slopes?
- (b) Estimate the speed at point P.
- 7. Accelerating from a Standstill The figure shows the distance-time graph for a 1994 Ford® Mustang Cobra™ accelerating from a standstill.

8. Lunar Data The accompanying figure shows a distance-time graph for a wrench that fell from the top platform of a communication mast on the moon to the station roof 80 m below.

In Exercises 9-12, at the indicated point find

- (a) the slope of the curve,
- (b) an equation of the tangent, and
- (c) an equation of the normal.
- (d) Then draw a graph of the curve, tangent line, and normal line in the same square viewing window.

9.
$$y = x^2$$
 at $x = -2$

10
$$y = r^2 - 4r$$
 at $r = 1$

9.
$$y = x^2$$
 at $x = -2$ 10. $y = x^2 - 4x$ at $x = 1$
11. $y = \frac{1}{x - 1}$ at $x = 2$ 12. $y = x^2 - 3x - 1$ at $x = 0$

12.
$$y = x^2 - 3x - 1$$
 at $x = 0$

In Exercises 13 and 14, find the slope of the curve at the indicated

13.
$$f(x) = |x|$$
 at (a) $x = 2$ (b) $x = -3$

14.
$$f(x) = |x - 2|$$
 at $x = 1$

In Exercises 15-18, determine whether the curve has a tangent at the indicated point. If it does, give its slope. If not, explain why not.

15.
$$f(x) = \begin{cases} 2 - 2x - x^2, & x < 0 \\ 2x + 2, & x \ge 0 \end{cases}$$
 at $x = 0$

16.
$$f(x) = \begin{cases} -x, & x \le 0 \\ x^2 - x, & x \ge 0 \end{cases}$$
 at $x = 0$

17.
$$f(x) = \begin{cases} x^2 - x, & x \ge 0 \\ 1/x, & x \le 2 \\ \frac{4-x}{4}, & x > 2 \end{cases}$$
 at $x = 2$

18.
$$f(x) = \begin{cases} \sin x, & 0 \le x < 3\pi/4 \\ \cos x, & 3\pi/4 \le x \le 2\pi \end{cases}$$
 at $x = 3\pi/4$

In Exercises 19–22, (a) find the slope of the curve at x = a.

(b) Writing to Learn Describe what happens to the tangent at x = a as a changes.

19.
$$y = x^2 + 2$$

20.
$$y = 2/x$$

21.
$$y = \frac{1}{r-1}$$

22.
$$y = 9 - x^2$$

Find the instantaneous rate of change of the position function y = f(t)in feet at the given time t in seconds.

23.
$$f(t) = 3t - 7$$
, $t = 1$

24.
$$f(t) = 3t^2 + 2t$$
, $t = 3$

25.
$$f(t) = \frac{t+1}{t}$$
, $t=2$

26.
$$f(t) = t^3 - 1$$
, $t = 2$

- 27. Free Fall An object is dropped from the top of a 100-m tower. Its height above ground after t sec is $100 - 4.9t^2$ m. How fast is it falling 2 sec after it is dropped?
- 28. Rocket Launch At t sec after lift-off, the height of a rocket is $3t^2$ ft. How fast is the rocket climbing after 10 sec?
- 29. Area of Circle What is the rate of change of the area of a circle with respect to the radius when the radius is r = 3 in.?
- 30. Volume of Sphere What is the rate of change of the volume of a sphere with respect to the radius when the radius is r=2 in.?
- 31. Free Fall on Mars The equation for free fall at the surface of Mars is $s = 1.86t^2$ m with t in seconds. Assume a rock is dropped from the top of a 200-m cliff. Find the speed of the rock at t = 1 sec.

